Page 300 - KUATERNİYONLAR VE GEOMETRİ
P. 300

Kaynaklar (References)                                                        299


                 Mathematics and Computing 58.1­2 (2018): 323­334.
              25. Jafari, M., and Yaylı, Y.,Matrix theory over the split quaternions." Int. J of geometry 3.2 (2014): 57­69.
              26. Antonuccio, Francesco. "Split­quaternions and the Dirac equation." Advances in Applied Clifford Algebras
                 25.1 (2015): 13­29.
              27. Levent Kula, Bölünmü¸s kauterniyonlar ve geometrik uygulamaları, Doktora tezi, 2003.
              28. Mustafa Özdemir, Timelike kuaterniyonların bazı geometrik uygulamaları, Doktora tezi, 2007.
              29. Melek Erdo˘ gdu, Split kuaterniyon matrisleri, Doktora tezi, 2015.

              Bikuaterniyonlar (Kompleks Kuaterniyonlar)
              1.  https://en.wikipedia.org/wiki/Biquaternion, August 2020.
              2.  William Rowan Hamilton , Proceedings of the Royal Irish Academy November 1844, page 388.
              3.  William K. Clifford, Preliminary sketch of biquaternions. Proc. London Math. Soc., s1­4 (1) (1871),
                 381–395.
              4.  Conway, Arthur W. (1911), "On the application of quaternions to some recent developments in electrical
                 theory", Proceedings of the Royal Irish Academy, 29A: 1–9.
              5.  Tian, Yongge. "Biquaternions and their complex matrix representations." Beiträge zur Algebra und
                 Geometrie/Contributions to Algebra and Geometry 54.2 (2013): 575­592.
              6.  Tian, Yongge. "Matrix theory over the complex quaternion algebra." arXiv preprint math/0004005 (2000).
              7.  Jafari, M., "On the matrix algebra of complex quaternions." in TWMS J. of Pure and App. Maths. (2016).
              8.  Flaut, Cristina, and Vitalii Shpakivskyi. "Real matrix representations for the complex quaternions." Advances
                 in Applied Clifford Algebras 23.3 (2013): 657­671.
              9.  Kravchenko, Vladislav (2003), Applied Quaternionic Analysis, Heldermann Verlag ISBN 3­88538­228­8.
              10. Sangwine, Stephen J. "Biquaternion (complexified quaternion) roots of­ 1." Adv Appl Clifford Al 16.1
                 (2006): 63­68.
              11. Sangwine, Stephen J.; Ell, Todd A.; Le Bihan, Nicolas (2010), "Fundamental representations and algebraic
                 properties of biquaternions or complexified quaternions", Adv Appl Clifford Al, 21 (3): 1–30,
              12. Sangwine, Stephen J.; Alfsmann, Daniel (2010), "Determination of the biquaternion divisors of zero,
                 including idempotents and nilpotents", Advances in Applied Clifford Algebras, 20 (2): 401–410
              13. Alagöz, Y; Özyurt, G. Some properties of complex quaternion and complex split quaternions matrices,
                 Miskolc Mathematical Notes; Vol. 20, Iss. 1, (2019): 45­58.
              14. Tanisli M., Özgur G., Biquaternionic Representations of Angular Momentum and Dirac Equation, Acta
                 physica Slovaca, vol.53, no.3 (2003) 243­252
              15. Özen, Kahraman Esen, and Murat Tosun. "Elliptic matrix representations of elliptic biquaternions and their
                 applications." International Electronic Journal of Geometry 11.2, 96­103, (2018).

              Hiperbolik Kuaterniyonlar
              1.  https://en.wikipedia.org/wiki/Hyperbolic_quaternion.
              2.  MacFarlane, A., Hyperbolic Quaternions, Proc. Roy. Soc. Edinburgh, 1900, pp. 169­181.
              3.  Demir, S., Tanı¸slı, M., Candemir, N., Hyperbolic Quaternions Formulation of Electromacnetism, Adv. Appl.
                 Clifford Algebras, 20 (2010), 547­563.
              4.  K. Gödel, An example of a new type of cosmological solutions of Einstein’s field equations of Gravitation.
                 Rev. Mod. Phys. 21 (1949), 447–450
              5.  I¸sıl Arda Kösal, A note on hyperbolic quaternions, Un. J. of Maths and App, 1 (3) (2018) 155­159.


              Segre Kuaterniyonları (De˘ gi¸smeli Kuaterniyonlar)
              1.  Catoni, Francesco, Roberto Cannata, and Paolo Zampetti. "An introduction to commutative quaternions."
                 Advances in Applied Clifford Algebras 16.1 (2006): 1­28.
              2.  C. Segre, The real representations of complex elements and extension to bicomplex systems (in Italian) Math.
                 Ann. 40 (1892), 413.
              3.  Kösal, H. H., Tosun M., Commutative quaternion matrices, Advances in Applied Clifford Algebras 24.3
                 (2014): 769­779.
              4.  Kösal, H. H., Tosun M., Universal similarity factorization equalities for commutative quaternions and their
                 matrices, Linear and Multilinear Algebra 67.5 (2019): 926­938.
   295   296   297   298   299   300   301   302   303   304   305