Page 302 - KUATERNİYONLAR VE GEOMETRİ
P. 302

Kaynaklar (References)                                                        301

              3.  Majernik V., Quaternion Formulation of the Galilean Space­Time Transformation, Acta phy. Slovaca, vol. 56,
                 no.1(2006),
              4.  Rosenfeld b.a., Geometry of Lie Groups, Kluwer Academic Publishers, Dordrecht , 1997.
              5.  M Jafari, On the properties of quasi­quaternion algebra, Commun.Fac.Sci.Univ. Ank.Series A1 Volume 63,
                 Number 1, Page s 1­10 (2014).
              6.  Ali Da˘ gdeviren, Dual kuaterniyonlar ve dual kuaterniyonik e˘ griler, Doktora tezi, 2018.
              7.  Kemal Gökhan Nalbant, Dual kuaterniyon katsayılı matrisler, Doktora tezi, 2018.

              Genelle¸stirilmi¸s Kuaterniyonlar
              1.  H. Pottmann and J. Wallner. Computational Line Geometry by H. Pottmann and J. Wallner, Springer Verlag,
                 Berlin, 2001
              2.  Jafari, Mehdi, and Yusuf Yaylı. "Generalized quaternions and rotation in 3­space 3." Ankara University,
                 Ankara (2012).
              3.  Mamagani, Ayoub B., and Mehdi Jafari. "On properties of generalized quaternion algebra." Journal of Novel
                 Applied Science 2.12 (2013): 683­689.
              4.  Jafari, Mehdi, and Yusuf Yaylı. "Rotation in four dimensions via generalized Hamilton operators." Kuwait
                 journal of science 40.1 (2013).
              5.  Jafari, Mehdi, Matrices of generalized dual quaternions, Konuralp Journal of Mathematics 3.2 (2015):
                 110­121.

              Hibrid Sayılar (Hibrid Kuaterniyonları)
              1.  Özdemir, Mustafa. "Introduction to hybrid numbers." Advances in Applied Clifford Algebras 28.1 (2018):
                 11.
              2.  Özdemir, Mustafa. "Finding n­th Roots of a 2 × 2 Real Matrix Using De Moivre’s Formula." Advances in
                 Applied Clifford Algebras 29.1 (2019): 2.
              3.  Öztürk, ˙ Iskender, and Mustafa Özdemir. "Similarity of hybrid numbers." Mathematical Methods in the
                 Applied Sciences, 2020.
              4.  Dattoli, G., et al. "Hybrid complex numbers: the matrix version." Advances in Applied Clifford Algebras
                 28.3 (2018): 58.
              5.  Behr, Nicolas, et al. "Dual Numbers and Operational Umbral Methods." Axioms 8.3 (2019): 77.
              6.  Szynal­Liana, Anetta. "The Horadam hybrid numbers." Discussiones Mathematicae­General Algebra and
                 Applications 38.1 (2018): 91­98.
              7.  Szynal­Liana, Anetta, and Iwona Włoch. "Introduction to Fibonacci and Lucas hybrinomials." Complex
                 Variables and Elliptic Equations (2019): 1­12.
              8.  ¸ Sentürk, Tuncay Deniz, et al. "A Study on Horadam Hybrid Numbers." Turkish Journal of Mathematics 44.4
                 (2020): 1212­1221.
              9.  Dattoli, G., et al. "Parabolic Trigonometry." International Journal of Applied and Computational Mathematics
                 6.2 (2020): 1­10.
              10. ˙ Imren Akgül, 2×2 türünden matrislerin karekökünün hesaplama yöntemleri, Y.Lisans tezi, 2020.

              Genelle¸stirilmi¸s Skaler Çarpım
              1.  Mackey D. S., Mackey N., Tisseur F., G­reflectors : Analogues of Householder transformations in scalar
                 product spaces, Linear Algebra and its Applications Vol. 385, 187–213 (2004)
              2.  Rodriguez­Andrade M.A., Arag´on­Gonz´alez G., Arag´on J.L., Verde­Star L., An algorithm for the
                 Cartan­Dieudonn´e theorem on generalized scalar product spaces, Linear Algebra and Its Applications, Vol.
                 434, Issue 5, 1238­1254 (2011)
              3.  Uhlig F., Constructive ways for generating (generalized) real orthogonal matrices as pro ducts of (generalized)
                 symmetries, Linear Algebra Appl. 332–334, 459–467 (2001)
              4.  Arag´on Gonz´alez G., Arag´on J.L., Rodriguez­Andrade M. A., The decomposition of an orthogonal
                 transformation as a product of reflections, J. Math. Phys. 47, Art. No. 013509 (2006)
              5.  Arag´on Gonz´alez G., Arag´on J.L., Rodriguez­Andrade M. A., Verde Star L., Reflections, Rotations, and
                 Pythagorean Numbers. Adv. Appl. Clifford Algebras 19, 1­14 (2009)
   297   298   299   300   301   302   303   304   305