Page 298 - KUATERNİYONLAR VE GEOMETRİ
P. 298

Kaynaklar (References)                                                        297

              6.  Mebius, Johan Ernest. "A matrix­based proof of the quaternion representation theorem for four­dimensional
                 rotations." arXiv preprint math/0501249, 2005.
              7.  Mebius, Johan Ernest. "Derivation of the Euler­Rodrigues formula for three­dimensional rotations from the
                 general formula for four­dimensional rotations." arXiv preprint math/0701759, 2007.
              8.  O’Neill, B.: Semi­Riemannian Geometry with Applications to Relativity. Academic Press, New York, 1983.
              9.  Perez­Gracia, Alba, and Federico Thomas. "On Cayley’s factorization of 4D rotations and applications."
                 Advances in Applied Clifford Algebras 27.1, 523­538, 2017.
              10. Özkaldi, S., Gundogan, H., Cayley formula, Euler parameters and rotations in 3­dimensional Lorentzian
                 space. Adv. Appl. Clifford Algebras 10, 367–377, 2010.
              11. Serre, D.: Matrices: Theory and Applications, Graduate Texts in Mathematics. Springer, London, 2002.
              12. Sodsiri, W.: Lorentzian motions in Minkowski 3­space. KKU Sci. J. 34(3), 242–248, 2006.
              13. Kula, L., Karacan, M.K., Yaylı, Y.: Formulas for the exponential of semi symmetric matrix of order 4. Math.
                 Comput. Appl. 10, 99–104, 2005.
              14. Bukcu, B.: On the rotation matrices in semi­Euclidean space. Commun. Fac.Sci.Univ.Ank.Ser.A
                 55,7–13,2006.
              15. Cayley A., Sur Quelques Proprietes des Determinants Gauches. The Collected Papers of Arthur Cayley
                 SC.D.F.R.S. Cambridge University Press (1889)
              16. Goldvard Alex, Karp Lavi, On the compositon of finite rotations in E , Journal of Geometry Symmetry and
                                                                   4
                 Physics, 39 (2015) 33–43
              17. Gallier J. H., Geometric Methods and Applications, For Computer Science and Engineering. Texts in Applied
                 Mathematics 38, 680p. 2011.
              18. Gallier J., Xu D., Computing exponentials of skew symmetric matrices and logarithms of orthogonal matrices.
                 Int. J. Robot. Autom. 17(4), 1–11, 2002.
              19. Duygu Soylu, Householder dönü¸sümü ve bazı geometrik uygulamaları, Y.Lisans tezi, 2019.
              20. Osman Palancı, Lorentz uzayında dönme matrislerinin üretilmesi, Y.Lisans tezi, 2011.
              21. ˙ Iskender Öztürk, Reel, karma¸sık ve hiperbolik düzlemde afin dönü¸sümler ve uygulamaları, Y.Lisans tezi,
                 2019.


              Dual Kuaterniyonlar
              1.  Wikipedia, https://en.wikipedia.org/wiki/Dual_quaternion, August, 2020.
              2.  Eduard Study, Geometrie der Dynamen, Teubner, Leipzig, 1901.
              3.  Agrawal, OM Prakash. "Hamilton operators and dual­number­quaternions in spatial kinematics." Mechanism
                 and machine theory 22.6, 569­575, 1987.
              4.  Mccarthy, J. M. 1990. Introduction to theoretical kinematics, MIT Press, Cambridge, MA, USA.
              5.  Wang, X., Han, D., Yu, C., & Zheng, Z., The geometric structure of unit dual quaternion with application in
                 kinematic control. Journal of Mathematical Analysis and Applications, 389(2), 1352­1364, 2012.
              6.  Akyar, Bedia. Dual quaternions in spatial kinematics in an algebraic sense, Turkish J. of Math.
                 32.4,373­391,2008.
              7.  L. Kavan, S. Collins, C. O’Sullivan, J. Zara, Dual quaternions for rigid transformation blending, Tech. rep.,
                 Trinity College Dublin, 2006.
              8.  G. R. Veldkamp, On the use of dual numbers, vectors and matrices in instantenaous, spatial kinematics,
                 Mechanism and Machine Theory, 1976 vol. 11, pp. 141­156.
              9.  Agrawal, O. P. 1987. Hamilton operators and dual­number­quaternions in spatial kinematics, Mechanism and
                 Machine Theory 22, No. 6: 569­575.
              10. B. Kenwright, A beginners guide to dual­quaternions: What they are, how they work, and how to use them
                 for 3d character hierarchies, in: The 20th In. Conf. on Comp. Grap., Vis. and Com. Vision, 2012, 1–13.
              11. Bekar, Murat, and Yusuf Yayı. "Dual quaternion involutions and anti­involutions." Advances in Applied
                 Clifford Algebras 23.3 (2013): 577­592.
              12. Ata, E, and Yaylı, Y. Dual quaternions and dual projective spaces. Chaos, Solitons & Fractals 40 (2009)
                 1255­1263.
              13. Ata E., Symplectic geometry on dual quaternions. D. Ü. Fen Bil.Derg. 6 (2004) 221­230.
              14. Atasoy, A., Ata, E., Yaylı, Y., & Kemer, Y. (2017). A new polar representation for split and dual split
                 quaternions. Advances in Applied Clifford Algebras, 27(3), 2307­2319.
              15. Ata E., Yaylı y., Dual unitary matrices and unit dual quaternions, Differential geometrydynamical system, 10
                 (2008) 1­12.
   293   294   295   296   297   298   299   300   301   302   303