Page 298 - KUATERNİYONLAR VE GEOMETRİ
P. 298
Kaynaklar (References) 297
6. Mebius, Johan Ernest. "A matrixbased proof of the quaternion representation theorem for fourdimensional
rotations." arXiv preprint math/0501249, 2005.
7. Mebius, Johan Ernest. "Derivation of the EulerRodrigues formula for threedimensional rotations from the
general formula for fourdimensional rotations." arXiv preprint math/0701759, 2007.
8. O’Neill, B.: SemiRiemannian Geometry with Applications to Relativity. Academic Press, New York, 1983.
9. PerezGracia, Alba, and Federico Thomas. "On Cayley’s factorization of 4D rotations and applications."
Advances in Applied Clifford Algebras 27.1, 523538, 2017.
10. Özkaldi, S., Gundogan, H., Cayley formula, Euler parameters and rotations in 3dimensional Lorentzian
space. Adv. Appl. Clifford Algebras 10, 367–377, 2010.
11. Serre, D.: Matrices: Theory and Applications, Graduate Texts in Mathematics. Springer, London, 2002.
12. Sodsiri, W.: Lorentzian motions in Minkowski 3space. KKU Sci. J. 34(3), 242–248, 2006.
13. Kula, L., Karacan, M.K., Yaylı, Y.: Formulas for the exponential of semi symmetric matrix of order 4. Math.
Comput. Appl. 10, 99–104, 2005.
14. Bukcu, B.: On the rotation matrices in semiEuclidean space. Commun. Fac.Sci.Univ.Ank.Ser.A
55,7–13,2006.
15. Cayley A., Sur Quelques Proprietes des Determinants Gauches. The Collected Papers of Arthur Cayley
SC.D.F.R.S. Cambridge University Press (1889)
16. Goldvard Alex, Karp Lavi, On the compositon of finite rotations in E , Journal of Geometry Symmetry and
4
Physics, 39 (2015) 33–43
17. Gallier J. H., Geometric Methods and Applications, For Computer Science and Engineering. Texts in Applied
Mathematics 38, 680p. 2011.
18. Gallier J., Xu D., Computing exponentials of skew symmetric matrices and logarithms of orthogonal matrices.
Int. J. Robot. Autom. 17(4), 1–11, 2002.
19. Duygu Soylu, Householder dönü¸sümü ve bazı geometrik uygulamaları, Y.Lisans tezi, 2019.
20. Osman Palancı, Lorentz uzayında dönme matrislerinin üretilmesi, Y.Lisans tezi, 2011.
21. ˙ Iskender Öztürk, Reel, karma¸sık ve hiperbolik düzlemde afin dönü¸sümler ve uygulamaları, Y.Lisans tezi,
2019.
Dual Kuaterniyonlar
1. Wikipedia, https://en.wikipedia.org/wiki/Dual_quaternion, August, 2020.
2. Eduard Study, Geometrie der Dynamen, Teubner, Leipzig, 1901.
3. Agrawal, OM Prakash. "Hamilton operators and dualnumberquaternions in spatial kinematics." Mechanism
and machine theory 22.6, 569575, 1987.
4. Mccarthy, J. M. 1990. Introduction to theoretical kinematics, MIT Press, Cambridge, MA, USA.
5. Wang, X., Han, D., Yu, C., & Zheng, Z., The geometric structure of unit dual quaternion with application in
kinematic control. Journal of Mathematical Analysis and Applications, 389(2), 13521364, 2012.
6. Akyar, Bedia. Dual quaternions in spatial kinematics in an algebraic sense, Turkish J. of Math.
32.4,373391,2008.
7. L. Kavan, S. Collins, C. O’Sullivan, J. Zara, Dual quaternions for rigid transformation blending, Tech. rep.,
Trinity College Dublin, 2006.
8. G. R. Veldkamp, On the use of dual numbers, vectors and matrices in instantenaous, spatial kinematics,
Mechanism and Machine Theory, 1976 vol. 11, pp. 141156.
9. Agrawal, O. P. 1987. Hamilton operators and dualnumberquaternions in spatial kinematics, Mechanism and
Machine Theory 22, No. 6: 569575.
10. B. Kenwright, A beginners guide to dualquaternions: What they are, how they work, and how to use them
for 3d character hierarchies, in: The 20th In. Conf. on Comp. Grap., Vis. and Com. Vision, 2012, 1–13.
11. Bekar, Murat, and Yusuf Yayı. "Dual quaternion involutions and antiinvolutions." Advances in Applied
Clifford Algebras 23.3 (2013): 577592.
12. Ata, E, and Yaylı, Y. Dual quaternions and dual projective spaces. Chaos, Solitons & Fractals 40 (2009)
12551263.
13. Ata E., Symplectic geometry on dual quaternions. D. Ü. Fen Bil.Derg. 6 (2004) 221230.
14. Atasoy, A., Ata, E., Yaylı, Y., & Kemer, Y. (2017). A new polar representation for split and dual split
quaternions. Advances in Applied Clifford Algebras, 27(3), 23072319.
15. Ata E., Yaylı y., Dual unitary matrices and unit dual quaternions, Differential geometrydynamical system, 10
(2008) 112.