Page 297 - KUATERNİYONLAR VE GEOMETRİ
P. 297

Kaynaklar (References)




          Reel Kuaterniyonlar
          1.  Wikipedia, https://en.wikipedia.org/wiki/Quaternion, August, 2020.
          2.  Hamilton W.R.: On a new species of imaginary quantities connected with the theory of quaternions.
             Proceedings of the Royal Irish Academy 2, 424­434, 1844
          3.  Hamilton, William Rowan (1844). "On quaternions, or on a new system of imaginaries in algebra".
             Philosophical Magazine. 25 (3): 489–495, 1844.
          4.  Hamilton, W. R., Lectures on Quaternions. Hodges and Smith, Dublin, 1853. http://historical.library.cornell.edu/math/.
          5.  Hüseyin Tevfik Pa¸sa, Linear Algebra, 1882, https://archive.org/details/linearalgebra00tevfgoog/
          6.  Hacısaliho˘ glu, H. Hilmi. Hareket geometrisi ve kuaterniyonlar teorisi. Gazi Üniversitesi, 1983.
          7.  Clifford, W. K., "Preliminary skecth of biquaternions", Proceedings of London Math. Soc. 4, 361­395, 1873.
          8.  Kantor, I.L.; Solodnikov, A.S., Hypercomplex numbers, an elementary introduction to algebras.
             Springer­Verlag, 1989.
          9.  Dam, Erik B., Martin Koch, and Martin Lillholm. Quaternions, interpolation and animation. Vol. 2.
             Copenhagen: Datalogisk Institut, Københavns Universitet, 1998.
          10. Morais, J. P., S. Georgiev, W. Sprößig. Real quaternionic calculus handbook. Springer Basel, 2014.
          11. K. Gurlebeck and W. Sprößig, ¨ Quaternionic and Clifford Calculus for Physicists and Engineers, John Wiley
             and Sons, Chichester, 1997
          12. Shoemake, Ken, Animating Rotation with Quaternion Curves, Computer Graphics. 19 (3): 245–254, 1985.
          13. H. S. M Coxeter, Quaternions and reflections. American Mathematical Monthly 53 (3), 136­146, 1946.
          14. T. A. Ell and S. J. Sangwine, Quaternion involutions and anti­involutions, Computers & Mathematics with
             Applications, Volume 53, 137­143, 2007.
          15. E. Salamin, “Application of quaternions to computation with rotations,” Internal Report, Stanford University,
             Vol. 1, 1979
          16. L. Brand, The roots of a quaternion, Am. Math. Mon., 49 (1942), pp. 519­520
          17. I. Niven, The roots of a quaternion, Am. Math. Mon., 49 (1942), pp. 386­388
          18. Cho E., De­Moivre Formula for Quaternions, Appl. Math. Lett. Vol. 11, no. 6(1998)33
          19. F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl., 251 (1997), pp. 21­57
          20. H.C. Lee, Eigenvalues of canonical forms of matrices with quaternion coefficients, Proc. R.I. A. 52, 1949.
          21. I. Niven, Equations in quaternions, Amer. Math. Monthly 48:654­661, 1995.
          22. S. L. Altmann. Rotations, Quaternions, and Double Groups. Oxford University Press, 1986
          23. A. J. Hanson. Visualizing Quaternions. Morgan Kaufmann, San Francisco, CA, 2006.
          24. J.B. Kuipers. Quaternions and Rotation Sequences. Princeton University Press, 1999.
          25. Justin Wyss­Gallifent, Lecture Notes on Quaternions,
             http://www.math.umd.edu/~immortal/MATH431/lecturenotes/ch_quaternions.pdf
          26. McCarthy, J. M., Introduction to Theoretical Kinematics, The MIT Press, Cambridge, MA. 1990.
          27. Hitzer, Eckhard. "Introduction to Clifford’s geometric algebra." arXiv preprint arXiv:1306.1660 2013.
          28. I. Porteous, Clifford Algebras and the Classical Groups, CUP, Cambridge (UK), 1995.
          29. Brand, L., Vector and Tensor Analysis, London, John Wiley & Sons, I947
          30. Aslaksen, Helmer. Quaternionic determinants, The Mathematical Intelligencer 18.3, 57­65, 1996.
          31. Salim Yüce, Sayılar ve Geometri, Pegem Akademi yayınları, 2020.
          32. Kazım Çeçen, Hüseyin Tevfik Pa¸sa, Bilim ve Teknik Dergisi, A˘ gustos 1991, 45­46.

          Dönme Matrisleri
          1.  Wikipedia, https://en.wikipedia.org/wiki/Rotation_matrix, August, 2020.
          2.  Wikipedia, https://en.wikipedia.org/wiki/Rotations_in_4­dimensional_Euclidean_space, August, 2020.
          3.  Erdo˘ gdu, Melek, and Mustafa Özdemir. "Simple, Double and Isoclinic Rotations with a Viable Algorithm."
             Mathematical Sciences and Applications E­Notes 8.1: 11­24, 2020.
          4.  J.L. Weiner and G.R. Wilkens, “Quaternions and rotations in E ” The American Mathematical Monthly, Vol.
                                                          4
             112, No. 1, pp. 69­76, 2005.
          5.  Özdemir, M., Erdo˘ gdu, M., On the rotation matrix in Minkowski spacetime. Rep. Math. Phys.74,27–38, 2014
   292   293   294   295   296   297   298   299   300   301   302